An Experimental Evaluation of Endmember Generation Algorithms

نویسندگان

  • Antonio Plaza
  • Juan J. Sánchez-Testal
  • Javier Plaza
چکیده

Hyperspectral imagery is a new class of image data which is mainly used in remote sensing. It is characterized by a wealth of spatial and spectral information that can be used to improve detection and estimation accuracy in chemical and biological standoff detection applications. Finding spectral endmembers is a very important task in hyperspectral data exploitation. Over the last decade, several algorithms have been proposed to find spectral endmembers in hyperspectral data. Existing algorithms may be categorized into two different classes: 1) endmember extraction algorithms (EEAs), designed to find pure (or purest available) pixels, and 2) endmember generation algorithms (EGAs), designed to find pure spectral signatures. Such a distinction between an EEA and an EGA has never been made before in the literature. In this paper, we explore the concept of endmember generation as opposed to that of endmember extraction by describing our experience with two EGAs: the optical real-time adaptative spectral identification system (ORASIS), which generates endmembers based on spectral criteria, and the automated morphological endmember extraction (AMEE), which generates endmembers based on spatial/spectral criteria. The performance of these two algoriths is compared to that achieved by two standard algorithms which can perform both as EEAs and EGAs, i.e., the pixel purity index (PPI) and the iterative error analysis (IEA). Both the PPI and IEA may also be used to generate new signatures from existing pixel vectors in the input data, as opposed to the ORASIS method, which generates new spectra using an minimum volume transform. A standard algorithm which behaves as an EEA, i.e., the N-FINDR, is also used in the comparison for demonstration purposes. Experimental results provide several intriguing findings that may help hyperspectral data analysts in selection of algorithms for specific applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the Impact of Spatial Resolution on Endmember Extraction from Hyperspectral Imagery

Spectral mixing is a phenomenon that occurs naturally and frequently in real-world scenarios. This phenomenon, which has traditionally been modeled by using both linear and nonlinear techniques, has been reported to significantly influence the task of estimating fractional covers from mixed pixels. Over the past years, several algorithms have been developed for spectral unmixing of hyperspectra...

متن کامل

H-COMP: A Tool for Quantitative and Comparative Analysis of Endmember Identification Algorithms

Over the past years, several endmember extraction algorithms have been developed for spectral mixture analysis of hyperspectral data. Due to a lack of quantitative approaches to substantiate new algorithms, available methods have not been rigorously compared using a unified scheme. In this paper, we describe H-COMP, an IDL (Interactive Data Language)-based software toolkit for visualization and...

متن کامل

Geometrical Endmember Extraction and Linear Spectral Unmixing of Multispectral Image

Accurate mapping is prepared using Linear unmixing of satellite images. Endmember extraction contributes the unmixing accuracy. In this paper, Endmembers are extracted using different Geometrical algorithms like Pixel Purity Index (PPI), Nearest Finder (N-FINDR) and Sequential Maximum Angle Convex Cone (SMACC) algorithms. Extracted Endmembers are given as input for unmixing and it is attempted ...

متن کامل

An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery

Although many endmember extraction algorithms have been proposed for hyperspectral images in recent years, there are still some problems in endmember extraction which would lead to inaccurate endmember extraction. One important problem is the variation in endmember spectral signatures due to spatial and temporal variability in the condition of scene components and differential illumination cond...

متن کامل

Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements

Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005